Examples for Chapter 10.



EXAMPLE 10.1

[t is desired to find the frequency and power of a single real sinusoidal signal
in white noise. The correlation matrix for the data is

3 0 =2
Reg=| 0 3 0
-2 0 3

Note that since the real sinusoid consists of two complex exponentials at positive
and negative frequencies, M is equal to 2 for this problem and the Pisarenko
method thus requires a 3 X 3 correlation matrix.

The matrices of eigenvalues and eigenvectors of Rg are found to be

500 —5 0 -5
A=|030] E=| 0-1 0
1 1

001 2 0-%

(You can check this by direct multiplication.)



The noise variance 1s therefore

O'g — )\3 =1
and the noise eigenvector is
1
V2
€3 — 0
_ 1
V2
The Pisarenko pseudospectrum is
. 1
Pp(e) = ————
p(e™) 'wles|?

A plot of this function peaks at w = +7/2 because for these values

11
w=|e | =| 4
e 152 —1
and ]
_ 1
V2
wle; =1 F) —1] 0|=0
1
=i
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The frequencies can also be located by finding the roots of the eigenfilter

Es(z) = —% — %z_Q
The roots are
z=49= eTI3

which shows that w = +7/2.

To find the power, proceed as follows. The signal vectors are

1 1 1] [ 1

S1 = 6*7% = i and sy = 6—3% = | —J
el™ —1 e T —1
Therefore
i{ﬂn 512]| _ l[—eikT—} 8‘1 SL
| Bor Bra| | — ey —] ]
| 1 I 1
R I i
O =1 0]} _7 3 —J J
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The equation

{ 511 ]? |512|2] {Pﬁ B [)\1 — o2
Ba1l* B2l | | Pa] | Mo — o7
becomes
22(1Py] |4
e
which has the solution
Pi,=P,=1
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EXAMPLE 10.2

The correlation matrix corresponding to complex exponentials in white noise
is given by

2 —7 —1
Re=| 7 2 —y
-1 9 2
The matrices of eigenvalues and eigenvectors are found to be
[ ] 1 2 ]

1 1 1
Vi Ve ve)
1 S
VRN

Since the two smallest eigenvalues are identical, the noise subspace has dimen-
sion 2, and there is only a single complex exponential present.

00 1]




The matrix of noise subspace eigenvectors is

5 _
5 0
Enoise — _\}61] \}51]
L V6 V2
and the corresponding projection matrix for the noise subspace is
2 1, 1]
3 3/ 3
Pnoise — EnoiseE;g@'se — _%.] % %J
1 1, 2
3 3 3
The MUSIC pseudospectrum is given by
. 1
Py(e??) =
MU( ) W*TPnoiseW
[t can be verified that the denominator goes to zero for
1 1
)23 —1

Therefore the signal has frequency
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To find the frequency by the root MUSIC procedure, it is necessary to form the
denominator polynomial
H— N * *
Pyy(z) = > Ef2)Ef(1/2")
1=M+1
Using the noise eigenvectors, the eigenfilters are

Ba(s) = 2 — Ly + b

with
Ey(2)E3(1/2%) =32+ spz+ 1 — g2 4+ 4277
and
Es(z) = %jz_l + %2_2
with

By(2)Bj(1/) = Lz 41— Ly~
The required polynomial is therefore
Ey(z)Ey(1/27) + Es(z)E5(1/27)
= %22 + %]Z +2 — %]z_l + %Z_Q
This polynomial has a double root on the unit circle at z = j corresponding to

the frequency w = 7 /2 and two other roots at z = —0.26797 and z = —3.73213.
These last two are the spurious roots. O
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EXAMPLE 10.3

The correlation matrix corresponding to the data in Example 10.2 is

2 —7 —1
Ry = ) 2 =)
-1 5 2

Following the procedure in Example 10.2, the matrix of noise subspace eigen-
vectors is found to be

2
5 0
_ 1, 1
Enoise — _T?j 721]
V6 V2
The partitioning of this matrix defines the quantities
T 2
c"=[y7 0]
and
— 750 750
2
E;wise — { \/i 1]
6 V2



The terms needed for the vector d are computed as

1,1 2 2
Bl,.c/(ce) = | V5V k ' ]/ [/3)
Ve valll
[T
- 1L/ 3 1
3 2
Therefore d is given by
1 1
d = = —% J
E;wisec/<c*TC> %

The pseudospectrum is then
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The product w*''d goes to zero for

1
W — @7% — 7
el?% —1

as in the previous example. Therefore the frequency of the complex exponential
is found to be
s
W= —
2

as before.

The frequency of the complex exponential can be found be the alternative
method of forming the polynomial

D(z)=1—-1pz7"+ 17

and finding its roots. These roots are found to be at z = jand z = —% 9. The

former is on the unit circle and corresponds to the frequency w = 7/2 while
the latter, which is a spurious root, lies within the unit circle (as guaranteed
for this method). O
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